Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 65(24): 245033, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101808

RESUMO

In order to fully exploit the ballistic potential of particle therapy, we propose an online range monitoring concept based on time-of-flight (TOF)-resolved prompt gamma (PG) detection in a single proton counting regime. In a proof of principle experiment, different types of monolithic scintillating gamma detectors are read in time coincidence with a diamond-based beam hodoscope, in order to build TOF spectra of PG generated in a target presenting an air cavity of variable thickness. Since the measurement was carried out at low beam currents (< 1 proton/bunch) it was possible to reach excellent coincidence time resolutions, of the order of 100 ps (σ). Our goal is to detect possible deviations of the proton range with respect to treatment planning within a few intense irradiation spots at the beginning of the session and then carry on the treatment at standard beam currents. The measurements were limited to 10 mm proton range shift. A Monte Carlo simulation study reproducing the experiment has shown that a 3 mm shift can be detected at 2σ by a single detector of ∼1.4 × 10-3 absolute detection efficiency within a single irradiation spot (∼108 protons) and an optimised experimental set-up.


Assuntos
Terapia com Prótons/métodos , Raios gama , Humanos , Método de Monte Carlo , Imagens de Fantasmas
2.
Phys Rev Lett ; 116(21): 214801, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284661

RESUMO

The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV/c, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

3.
Radiat Prot Dosimetry ; 161(1-4): 245-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24594906

RESUMO

In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %.


Assuntos
Nêutrons , Proteção Radiológica/instrumentação , Radiometria/instrumentação , Algoritmos , Calibragem , Eletrônica , Desenho de Equipamento , França , Gases , Íons , Método de Monte Carlo , Prótons , Doses de Radiação , Radiometria/métodos , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...